4-3 pg. 249 #1-5, 6, 8, 10, 13, 17, 27-29

1. Graph the function represented by the table below. Is the function linear or nonlinear?

Х	0	1	2	3	4	
у	12	13	14	15	16	

- **2.** The ordered pairs (0, -2), (1, 1), (2, 4), (3, 7), and (4, 10) represent a function. What is a rule that represents this function?
- 3. Which rule could represent the function shown by the table below?

	Х	0	1	2	3	4	
	У	0	-1	-4	-9	-16	
A. $y = x^2$ B. $y = -x^3$					C. $y = -x^2$		

4. Vocabulary Does the graph represent a *linear* function or a nonlinear function? Explain.

5. Error Analysis A classmate says that the function shown by the table at the right can be represented by the rule y = x + 1. Describe and correct your classmate's error.

Х	у
0	1
1	2
2	5
3	10
4	17

The cost C, in dollars, for pencils is a function of the number n of pencils purchased. The length L of a pencil, in inches, is a function of the time t, in seconds, it has been sharpened. Graph the function shown by each table below. Tell whether the function is *linear* or *nonlinear*.

6.	Pencil Cost					
	Number of Pencils, n	6	12	18	24	30
	Cost, C	\$1	\$2	\$3	\$4	\$5

Graph the function shown by each table. Tell whether the function is linear or nonlinear.

Each set of ordered pairs represents a function. Write a rule that represents the function.

- **13.** (0, 0), (1, 4), (2, 16), (3, 36), (4, 64)
- **17. Writing** The rule $V = \frac{4}{3}\pi r^3$ gives the volume V of a sphere as a function of its radius r. Identify the independent and dependent variables in this relationship. Explain your reasoning.

Evaluate each expression for $x = -3$, $x = 0$, and $x = 2.5$.				
27. $7x - 3$	28. $1 + 4x$	29. $-2x^2$		
x = -3	x = -3	x = -3		
0	0	0		
x = 0	x = 0	x = 0		
x = 2.5	x = 2.5	x = 2.5		
. 2.0				