p.458 #6, 9-13, 15-17, 23-31, 33, 36-39

Do you UNDERSTAND?

6. Vocabulary How can you tell if an exponential function models growth or decay?

Identify the initial amount a and the growth factor b in each exponential function.

9.
$$g(x) = 14 \cdot 2^x$$

10.
$$y = 150 \cdot 1.0894^x$$

11.
$$y = 25,600 \cdot 1.01^x$$

12.
$$f(t) = 1.4^t$$

- **13. College Enrollment** The number of students enrolled at a college is 15,000 and grows 4% each year.
 - **a.** The initial amount a is \blacksquare .
 - **b.** The percent rate of change is 4%, so the growth factor *b* is $1 + \blacksquare = \blacksquare$.
 - **c.** To find the number of students enrolled after one year, you calculate $15,000 \cdot \blacksquare$.
 - **d.** Complete the equation $y = \cdot \cdot \cdot \cdot$ to find the number of students enrolled after x years.
 - e. Use your equation to predict the number of students enrolled after 25 yr.

Find the balance in each account after the given period.

- **15.** \$4000 principal earning 6% compounded annually, after 5 yr
- **16.** \$12,000 principal earning 4.8% compounded annually, after 7 yr
- 17. \$500 principal earning 4% compounded quarterly, after 6 yr

Identify the initial amount a and the decay factor b in each exponential function.

See Pro

23.
$$y = 5 \cdot 0.5^x$$

24.
$$f(x) = 10 \cdot 0.1^x$$

24.
$$f(x) = 10 \cdot 0.1^x$$
 25. $g(x) = 100(\frac{2}{3})^x$ **26.** $y = 0.1 \cdot 0.9^x$

26.
$$y = 0.1 \cdot 0.9^{-3}$$

27. Population The population of a city is 45,000 and decreases 2% each year. If the trend continues, what will the population be after 15 yr?

State whether the equation represents exponential growth, exponential decay, or neither.

28.
$$y = 0.93 \cdot 2^x$$
 29. $y = 2 \cdot 0.68^x$ **30.** $y = 68 \cdot x^2$ **31.** $y = 68 \cdot 0.2^x$

29.
$$y = 2 \cdot 0.68^x$$

30.
$$y = 68 \cdot x^2$$

31.
$$y = 68 \cdot 0.2^x$$

State whether each graph shows an exponential growth function, an exponential decay function, or neither.

36.

37.

38.

39.

