Systems of Equations: Substitution

Today's Learning Targets:

6.4 - I can use substitution to solve simple systems of linear equations.

Evaluate.

$$
3 x-12 \text { when } x=-2
$$

$$
-12(y-4)+2 \text { when } y=-1
$$

$$
7-(x+9) \text { when } x=6
$$

Substitute one equation into the other! 1.
 .

2.
3.
4.
5. \checkmark

$$
\begin{aligned}
& y=x+2 \\
& y=2 x-5
\end{aligned}
$$

$$
\begin{aligned}
& x=y-1 \\
& x+2 y=8
\end{aligned}
$$

$$
\begin{aligned}
& y=x-1 \\
& 2 x-y=0
\end{aligned}
$$

Weird stuff...

$$
\begin{aligned}
& x=-3 y+4 \\
& 6 y+2 x=8
\end{aligned}
$$

$$
\begin{aligned}
& 2 y-8 x=12 \\
& 4 x-9=y
\end{aligned}
$$

$3 y+4 x=14$ $-2 x+y=-3$

1 Solution:

- $x=3, y=0 \quad(3,0)$
- Solution works in both equations.

No Solution:

- $3 \neq 4$
- no (x, y) that make both equations true.
- Write "no solution" or the symbol \varnothing.
- Parallel Lines!

Infinitely Many Solutions:

- $5=5$ or $x=x$
- Any ordered pair that works in 1 equation will work in the other.
- Write "Inf. Many Sol." or the symbol
- Same Line!

Substitute one equation into the other!

1. I.D. one variable that is by itself
*circle the other side.
2. Send in substitute for x (or y)
*put circled part into other equation for lone variable.
3. There should only be one variable nou
*solve for the variable that's left
4. Plug answer into an equation.
5. $\sqrt{\text { tind the ther variable }}$ the solution in both equations
