7-1. Zero \& Negative Exponents

Today's Learning Target:

* I CAN simplify expressions with zero exponents
* I CAN simplify expressions with negative exponents

$$
\begin{aligned}
& 2^{4}= \\
& 2^{3}= \\
& 2^{2}= \\
& 2^{1}= \\
& 2^{0}= \\
& 2^{-1}= \\
& 2^{-2}=
\end{aligned}
$$

$$
\begin{aligned}
& 10^{4}= \\
& 10^{3}= \\
& 10^{2}= \\
& 10^{1}= \\
& 10^{0}= \\
& 10^{-1}= \\
& 10^{-2}=
\end{aligned}
$$

$$
\begin{array}{r}
2^{3}= \\
4^{1}= \\
(-3)^{3}= \\
-6^{2}= \\
(1+3)^{2}= \\
3 \cdot 2^{2}= \\
(3 \cdot 2)^{2}= \\
(1 / 2)^{2}=
\end{array}
$$

What is the difference?

$(-6)^{2}=$

Unit 7-7.1

hmmm...
What about negative exponents? Think back to the table.

$$
\begin{array}{ll}
2^{2}=4 & 10^{2}=100 \\
2^{1}=2 & 10^{1}=10 \\
2^{0}= & 10^{0}= \\
2^{-1}= & 10^{-1}= \\
2^{-2}= & 10^{-2}=
\end{array}
$$

NegativeExpo's

- Don't make negative values.
- Are reciprocals of positive exponent.

$$
\begin{array}{ll}
2^{3}=2 \cdot 2 \cdot 2 & 2^{-3}= \\
x^{2}=x \cdot x & x^{-2}=
\end{array}
$$

Calculator

$$
\frac{1}{2^{-2}}=
$$

$$
1 \times 2 \triangle \triangle(-) \pi=
$$

Simplified Expressions:

- have positive exponents
- do not have parenthesis ()
- have reduced fractions
- each variable appears only once
$\begin{aligned} \text { The zero exponent rule: } \\ \text { (as long as a } \neq 0 \text {) }\end{aligned} \quad x^{0}=1$

$$
\begin{array}{rlr}
10 & = & (3 x)^{0}= \\
(-2)^{0} & = & 4 x^{0}= \\
x^{0} & = & -90=
\end{array}
$$

The negative $\underset{(\text { again, } a \neq 0)}{\exp } \mathbf{x} x^{-n}=\frac{1}{x^{n}}$

$$
2^{-2}=\quad 4 y^{-1}=
$$

$x^{-3}=$
$(-2)^{-3} \mathrm{~h}^{4}=$
$(-3)^{-5}=$

$$
7^{0} z^{-7}=
$$

$a^{6} b^{-2}=$

