Chapter 6 Review

Solve each system by graphing (6.1).

Tell whether the system has one solution, infinitely many solutions, or no solution.

Solve each system using <u>substitution (6.2)</u> .			
4. $x = 4y$	5. $y = x - 7$	6. $y = x + 2$	
x + 2y = 66	3x + y = 17	2x + y = 8	

Solve each system using <u>elimination (6.3)</u>.

7. $x + y = 4$	8. $-2x + 3y = 9$	9. $x + y = 7$
x - y = 6	2x - 2y = -4	3x - 2y = 11

10. 7<i>x</i> – 8<i>y</i> = 11	110.4x + 0.3y = 1.7	12. $3x - 7y + 10 = 0$
$\frac{8x - 7y = 7}{100}$	0.7x - 0.2y = 0.8	y - 2x - 3 = 0

Write a system of equations to model each situation. Solve by any method. (6.4)

13. A wallet contains a total of 61 bills, a combination of \$1 bills & \$5 bills. The total value of the bills is \$201. How many bills of each type does the wallet contain?

– Form G 🖳

Graph each inequality in the coordinate plane (6.5).

17. For a party, you can spend no more than \$20 on cakes. Egg cake cost \$4 and cream cake cost \$2. Write the linear inequality that models the situation. Graph the inequality.

18. Error Analysis A student determined that (1, 1) is one of the solutions of the linear inequality $y \le 2x - 3$, as shown below. What error did the student make?

$$y \le 2x - 3$$

 $1 \le 2(1) - 3$
 $1 \le 1$

Solve each system by graphing(6.6).