\qquad Class \qquad Date \qquad

Review

Chapter 7

Lessons 7-1 to 7-5

Simplify each expression. Use only positive exponents.

1. $(2 t)^{-6}$
2. $5 m^{5} m^{-8}$
3. $(4.5)^{4}(4.5)^{-2}$
4. $\left(m^{7} t^{-5}\right)^{2}$
5. $\left(x^{2} n^{4}\right)\left(n^{-8}\right)$
6. $\left(w^{-2} j^{-4}\right)^{-3}\left(j^{7} j^{3}\right)$
7. $\left(t^{6}\right)^{3}(m)^{2}$
8. $\left(3 n^{4}\right)^{2}$
9. $\frac{r^{5}}{g^{-3}}$
10. $\frac{1}{a^{-4}}$
11. $\frac{w^{7}}{w^{-6}}$
12. $\frac{6}{t^{-4}}$
13. $\frac{a^{2} b^{-7} c^{4}}{a^{5} b^{3} c^{-2}}$
14. $\frac{\left(2 t^{5}\right)^{3}}{4 t^{8} t^{-1}}$
15. $\left(\frac{a^{6}}{a^{7}}\right)^{-3}$
16. $\left(\frac{c^{5} c^{-3}}{c^{-4}}\right)^{-2}$
17. $\left(\frac{4 x^{3}}{8 x^{-2}}\right)^{0}$
18. $\left(\frac{y^{-3}}{y^{3}}\right)^{2}$

Evaluate each expression for $m=2, t=-3, w=4$, and $z=0$.
19. t^{m}
20. t^{-m}
21. $(w \cdot t)^{m}$
22. $w^{m} \cdot t^{m}$
23. $w^{-t} t^{t}$
24. $w^{m} w^{z}$

Write each number in scientific notation.
25. 34,000,000
26. 0.00063
27. 1500
28. 0.0002
29. 360,000
30. $6,200,000,000$
31. 0.05
32. 0.000000000891
33. 75,000,000,000

Write each number in standard notation.
34. 8.05×10^{6}
35. 3.2×10^{-7}
36. 9.0×10^{8}
37. 4.25×10^{-4}
38. 2.35×10^{2}
39. 6.3×10^{4}
40. 2.001×10^{-5}
41. 5.2956×10^{3}
42. 8.345×10^{-3}

Write each number in scientific notation.

43. A bacteria culture has a population of approximately $7,500,000,000$.
44. The diameter of a blood cell is about 0.0000082 m .

Write each answer in scientific notation.

45. $\left(2 \times 10^{3}\right) \times\left(3 \times 10^{2}\right)$
46. $\left(6.24 \times 10^{23}\right)-\left(3.3 \times 10^{22}\right)$
47. $\left(3 \times 10^{-5}\right) \times\left(3 \times 10^{8}\right)$
48. $\left(4.4 \times 10^{6}\right)+\left(6.6 \times 10^{6}\right)$

Lesson 7-6

Evaluate each function over the domain $\{-1,0,1,2\}$. As the values of the domain increase, do the values of the function increase or decrease?
49. $y=3^{x}$
50. $y=\left(\frac{3}{4}\right)^{x}$
51. $y=1.5^{x}$
52. $y=\left(\frac{1}{2}\right) \cdot 3^{x}$
53. $y=-3 \cdot 7^{x}$
54. $y=-(4)^{x}$
55. $y=3 \cdot\left(\frac{1}{5}\right)^{x}$
56. $y=2^{x}$
57. $y=2 \cdot 3^{x}$
58. $y=(0.8)^{x}$
59. $y=2.5^{x}$
60. $y=-4 \cdot(0.2)^{x}$

Write and solve an exponential equation to answer each question.
61. Suppose an investment of $\$ 5,000$ doubles every 12 years. How much is the investment worth after 36 years? After 48 years?
62. Suppose 15 animals are taken to an island, and then their population triples every 8 months. How many animals will there be in 4 years?
63. The population of a city this year is 34,500 . The population is expected to grow by 3% each year. What will be the population of the city in 12 years?

Lesson 7-7

Identify each function as exponential growth or exponential decay. Then identify the growth factor or decay factor.
64. $y=8^{x}$
65. $y=\frac{3}{4} \cdot 2^{x}$
66. $y=9 .\left(\frac{1}{2}\right)^{x}$
67. $y=4 \cdot 9^{x}$
68. $y=0.65^{x}$
69. $y=3 \cdot 1.5^{x}$
70. $y=\frac{2}{5} \cdot\left(\frac{1}{4}\right)^{x}$
71. $y=0.1 \cdot 0.9^{x}$
72. $y=0.7 \cdot 3.3^{x}$

Write an exponential function to model each situation. Find each amount after the specified time.
73. $\$ 200$ principal, 4% compounded annually for 5 years
74. $\$ 1000$ principal, 3.6% compounded monthly for 10 years
75. $\$ 3000$ investment, 8% loss each year for 3 years

Find the balance in each account.
76. You deposit $\$ 2500$ in a savings account with 3% interest compounded annually. What is the balance in the account after 6 years?
77. You deposit $\$ 750$ in an account with 7% interest compounded semiannually. What is the balance in the account after 4 years?
78. You deposit $\$ 520$ in an account with 4% interest compounded monthly. What is the balance in the account after 5 years?

